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Abstract 

The incommensurate structure of strontium diniobate, 
Sr2Nb20 7, is formed below 488 K with a one- 
dimensional lattice modulation along the [100] direc- 
tion. A model of the atom displacements due to this 
lattice modulation has been proposed from an analysis 
of the systematic extinction of the extra reflections due 
to the incommensurate structure. High-resolution 
electron microscopy clearly reveals the lattice mod- 
ulation in the incommensurate phase. The observed 
images are well interpreted by image simulation of 
the proposed model. 

1. Introduction 

Some of the A2B207-type oxide compounds have a 
structure composed of slabs of distorted cells of 
perovskite-type structure rather than the pyrochlore- 
type structure of Cd2Nb2Ov. Recently, their physical 
properties were investigated by using synthesized single 
crystals (Nanamatsu, Kimura, Doi & Takahashi, 
1971; Nanamatsu, Kimura & Kawamura, 1975). 
Strontium diniobate (Sr2Nb207) is one of these 
materials which has a ferroelectric phase below 1615 K 
in which spontaneous polarization arises along the e 
axis of its orthorhombic lattice. There is another type of 
ferroelectric transition at 117 K. The perovskite-type 
slabs are stacked along the b axis, so the crystal is 
easily cleaved parallel to the (010) plane. The crystal 
structure of Sr2Nb207 has been analyzed by X-ray 
diffraction (Ishizawa, Marumo, Kawamura & Kimura, 
1975). It was reported that at room temperature the 
structure is orthorhombic with space group Cme21 and 
lattice parameters a = 3.933, b = 26.726 and e = 
5.683 A. Scheunemann & Mfiller-Bushbaum (1975), 
on the other hand, reported space group Pbn2~ with a 
doubling of the a parameter. Very recently, electric and 
dielectric anomalies were observed at 488 K (Ohi, 
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Kimura, Ishida & Kakinuma, 1979), which suggested 
the existence of a structural phase transition. An 
electron microscope study by the present author clearly 
revealed that a normal-incommensurate phase trans- 
ition is responsible at this temperature (Yamamoto, 
Yagi, Honjo, Kimura & Kawamura, 1980). 

In the present paper detailed observations and 
analyses of the electron diffraction pattern from the 
incommensurate phase are described. Then we propose 
a model for the atom displacements which produce the 
incommensurate lattice modulation. High-resolution 
electron microscope images reveal the modulated 
lattice as well as the fundamental lattice. The images 
were calculated by using the multi-slice method and 
were compared with the observed ones to test the 
proposed model of the atom displacements. 

2. Experimental 

Single crystals of SrzNb207 were grown by a floating 
zone technique using an NEC infrared heating furnace 
(Takahashi, Nanamatsu & Kimura, 1972). The crystal 
was crushed into fine fragments in an agate mortar. 
The fragments were floated in a solution of acetone and 
were scooped up on copper grids coated with carbon. 
These specimens were examined with a JEM 200CX 
electron microscope equipped with a goniometer stage 
and a high-resolution pole piece (C s = 1.2 mm). The 
exposure time for recording the high-resolution images 
was usually 2.8 s or less at a magnification of 
350000-500000 in order to avoid the effect of 
specimen drift due to mechanical and electrical 
instability. 

3. Analysis of the electron diffraction patterns 

3.1. Exinction of the extra diffraction spots in the 
incommensurate phase 

Fig. 1 shows diffraction patterns from Sr2Nb20 7 at 
room temperature. The electron beam is parallel to the 
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Fig. 1. Diffraction patterns from Sr2Nb207 (a) in the 1010] and 
(b) in the [001] orientation at room temperature. Arrows indicate 
extra diffraction spots appearing below 488 K. (c) The 
arrangement of the diffraction spots in reciprocal space. 

[010l axis of the high-temperature normal phase t  in (a) 
and to the [0011 axis in (b). In the incommensurate 
phase below 488 K weak extra diffraction spots appear 
at irrational positions as indicated by arrows in Fig. 
1 (a) and (b). Their positions are very close to h + ½, k, 1, 
but are displaced slightly along the I100]* direction as 
shown in Fig. l(b). The fundamental spots have 
systematic absences of hkl, h + k odd and hOl, I odd. 
The wave vector for the lattice modulation wave in the 
incommensurate phase can be chosen as q = qa* = 
+(½ - 6)a*, where 6 indicates deviation of the spots 
from the half-integer position. Then the extra spots 
appear at the following positions: 

h+_q, k l  : h + k = 2 n ,  k ¢ O  ( l a )  

h+_q,O,l  : h = 2 n ,  l = 2 n +  1. ( lb)  

There are also seen very weak diffraction spots 
enclosed by circles in Fig. l(a). They arise from 
multiple scattering, since they do not appear in the 
[001] orientation (Fig. l b). The fact that they are split 
clearly shows that the extra diffraction spots are at 
irrational positions. It is noticed that there are no 
second-order extra diffraction spots. If they really 
existed, they should appear,  for example, around the 
101 position in Fig. l(a), or the 120 position in (b). The 
value of 6 at room temperature is 0.010 and decreases 
with decreasing temperature, but has a finite value even 
at 55 K (Yamamoto,  Yagi, Honjo, Kimura & 
Kawamura ,  1980). It is not yet clear whether an 
incommensura te-commensura te  phase transition oc- 
curs at this low temperature or not. 

3.2. A model o f  atom displacements in the incom- 
mensurate phase 

A model of the atom displacements can be derived 
from the systematic extinction of the extra diffraction 
spots mentioned in § 3.1. The displacement of the kth 
atom in the nth unit cell aligned along the a axis can be 
expressed as 

Ar,, k = A k sin (2~zq. r,k + (o k) 

= A k sin[21r(nq + q . r  k) + ~Pkl, (2) 

where rnk is the ideal position vector of the atom in the 
crystal, r k that in the unit cell, q the modulation wave 
vector, and A k and ~Pk the amplitude vector and phase 
of the modulation wave, respectively. Higher harmonic 
terms are neglected, since the higher-order extra 
diffraction spots are not observed. The scattering 
amplitude from the crystal is given as 

F(s) = ~ ~ fk exp[2~ris.(r,,k + Ar,k)l, (3) 
n k 

"t In the normal phase above 488 K the crystal is considered to 
have the structure reported by Ishizawa et al. (1975) so the 
crystallographic directions and the indices of the reflections in the 
incommensurate phase will always be referred to the orthorhombic 
crystal axes of the normal phase throughout this paper. 
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where fk  is an atom form factor of the kth atom, and s 
is a scattering vector. By using the relationship 

c~. 

exp(iZ sin 0) = X Jm(z)  exp(imO), 
m 

we have 

F(s) = X fk exp[2nis, rkl 
k 

00 

× ~ Jm(2ns. Ak) exp[ im(2nq.r  k + ~Pk)l 
m =  - ¢ ~  

x X exp[2ni(s + mq). R,], (4) 
n 

where J,, is the Bessel function of rnth order, and R,  is 
the position vector of the origin of the nth unit cell. To a 
first approximation J0 ~- 1 and Je~(2ns. A k) ~- +ns .  A k 
for the condition s. A k ~ 1, and the higher-order terms 
Jm (Iml > 2) can be neglected. The term o f J  0 gives the 
scattering amplitude of the fundamental diffraction spot 
and the terms of J+~ give that of the first-order satellite 
diffraction spots, which is proportional to the following 
term, 

AF(s) ~ _+ ) '  fk(S. Ak) expl2nis,  r k] 
k 

× exp[+(2niq.rk + i~ok)] G(G +_ q) G(sy) G(s~), (5) 

where G, sy, s~ are components of s, and G(s) is 
sin (nNs)/sin (ns), where N is the number of unit cells in 
the crystal. G(sx + q) has a finite value only when 
s~ + q = h(integer), so AF(s) has peaks at the positions 
s = [ h + _ q , k , l ] .  

The extinctions of the extra diffraction spots are very 
similar to those of the fundamental spots except for the 
extra spots around the hOl spots. In the normal phase 
with the space group Cmc2~, all atoms are positioned at 
the 4(a) sites described in Table 1. It is proposed that 
the 4(a) site atoms are displaced with a correlation 
between each other in the incommensurate phase. For 
such atom displacements AF(s) must satisfy the ex- 
tinction rules of the extra diffraction spots at positions 
of [h + q, k, l] with any h,k,I. We substitute the 
coordinates of the 4(a) sites in (5) and find the 
relationships between the amplitude vectors and phases 
of the four atoms which make AF(s) equal to zero in 
accordance with the extinction rules. The first rule of 
( la )  gives the following relationships: 

A1 = Az, A3 = A4, q)l = (02, (Pa = ~P4" (6) 

Table 1. Displacements o f  atoms (1) to (4) 

r k lrnk 

(1) O.y,z A k sin [2nn/M + ,&[ 
(2) ½, ½ + y. z A k sin [2n(n/M + I/2M) + ~kl 
(3) 0.?,½+ z Aksin [2n(n/M + ~) + Ok[ 
(4) ½,½+Y, ½+Z A, sinl2n(n/M+ I/2M+½)+ ekl 

From the second rule ( lb) the additional relations are 
given as 

A I = A  3 and ~P l -{03=+n .  (7) 

Then the displacements of the four atoms in the nth cell 
are written as those described in Table 1 in which Ma is 
a period of the modulation wave, i.e. M = 1/q. All four 
atoms have the same amplitude vector, so they are 
displaced along the same direction, but with different 
phases. The modulation waves for atoms (1) and (2) in 
Table 1 have the same phase, and their phase differs by 
n from the phase of atoms (3) and (4). Atoms (1) and 
(3) are in the same perovskite slab and atoms (2) and 
(4) are in the neighbouring slab. 

The displacements of all the atoms in the unit cell 
obey the above rules. It is plausible to assume that the 
displacements are due to a rotation of the N b O  6 

octahedra around a certain axis without any defor- 
mation, since the phase transition concerned is known 
not to be a ferroelectric transition. For a ferroelectric 
transition, a deformation of the octahedra due to 
relative shifts of anions and cations would take place in 
the perovskite-type structures. It is found that only 
rotation about the b axis is possible, if the dis- 
placements of all the oxygen atoms at the corners of the 
NbO 6 octahedra have the formula described in Table 1. 
This may be supported by the result of the X-ray 
analysis of Ca2Nb207 (Ishizawa, Marumo & Iwai, 
1980), which has the same type of structure as 
Sr2Nb20 7 and undertakes successive phase transitions 
similar to those of Sr2Nb207, in which the space group 
of the crystals changes as Cmcm -, Cmc2~ --, P2~ with 
decreasing temperature. It was reported that the 
rotational displacements of the oxyen octahedra 
around the b axis occur in the material at the phase 
transition from Cmc21 to P2 I. The displacements of the 
oxygen atoms corresponding to the rotation of the 
octahedra proposed here are shown in Fig. 2. In Fig. 
2(c) arrows inside the octahedra indicate the directions 
of the rotation. The Sr atoms are considered to displace 
nearly in the c direction accompanied by the dis- 
placements of the oxygen atoms. For simplicity the 
atom displacements are depicted in Fig. 2 as if the 
modulation wave had a period of 2a and a phase of ~0 = 
n/4, so that the atom displacements in the neigh- 
bouring slabs have the same magnitude. The model 
mentioned here will be tested in a later section. 

3.3. Lattice modulation in the incommensurate phase 

Generally, lattice modulations in incommensurate 
phases can be divided into two types in terms of the 
structural aspect, i.e. spatially continuous or spatially 
discontinuous, both of which can give rise to similar 
extra diffraction spots at irrational positions. The 
former is a displacive-type modulation which has been 
reported for many materials such as the transition- 
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metal dichalogenides (Van Landuyt, Van Tendeloo & 
Amelinckx, 1974a,b, 1976; Wilson, di Salvo & Maha- 
jan, 1975) and ferroelectric crystals (Hoshino & 
Motegi, 1967; Shiozaki, 1971; Iizumi, Axe, Shirane & 
Shimaoka, 1977). The latter has been reported for 
many alloys (Sato & Toth, 1961), oxides (Iijima & 
Cowley, 1974; Bando & Iijima, 1980) and sulphides 
(Nakazawa, Yamamoto & Morimoto, 1979), which is 
usually accompanied by periodic or nonperiodic arrays 
of crystal defects such as out-of-phase boundaries. The 
sharp splits of superlattice reflections from ordered 
alloys containing antiphase domains were studied 
theoretically by Fujiwara (1957). 

Here we consider two simple one-dimensional 
models for the lattice modulation of Sr2Nb2OT, a 
sinusoidal modulation and a periodic array of anti- 
phase boundaries. They are schematically shown in 
Figs. 3(a) and (b), respectively. In Fig. 3(a), the 
sinusoidal modulation with a period slightly larger than 
2a gives displacements of atoms as indicated by 
arrows. It is a longitudinal wave, so the arrows show 
magnitudes of the atom displacements but not direc- 
tions of them. The form factor of the nth atom for the h 
reflection is written as 

F,(h) = fexpl  2ni(h. A) sin (2nn/M)I, (8) 

i , - b  
(a) 

t, i ,  

(b) 

~.b 

! 

oSr  © 0  
(c)- 

Fig. 2. The model of the atom displacements in the incom- 
mensurate phase: (a), (b) and (c) show the structure viewed along 
the a, b, and c axes. Nb atoms are located inside the oxygen 
octahedra.  

where A and M have the same meaning as before, and 
f is an atom form factor and is kept constant for 
simplicity. Then the value of 6 is given as 

6= ½- 1/m= 1/2N, (9) 

where N is the number of unit cells through which the 
modulation wave changes its phase by n (see Fig. 3). 
For an array of antiphase boundaries in the lattice 
where atoms displace in opposite directions alternately, 
a form factor of the atom is written as 

F,(h) = fexp[ +2nih. A]. (10) 

The two models give the intensity distributions in the 
diffraction pattern similar to each other as shown in 
Figs. 4(a) and (b), respectively. In (a) the diffraction 
peak near the positions of h = 1/2 and 3/2 are satellite 
reflections around the nearest fundamental spots, while 
in (b) those peaks are considered to be split spots of the 
ordered structure 6 = 0 (Sato & Toth, 1961). 

It seems to be difficult to distinguish between the two 
types of modulations from the analysis of the diffrac- 

No ............ ; I 
~-Mo--~ 

(a) 

___ ~ ia  * Na t t t i t  

(b) 
Fig. 3. One-dimensional models of the incommensurate lattice 

modulation; (a) a sinusoida] modulation and (b) an array of 
antiphase boundaries. Arrows indicate magnitudes of atom 
displacements. 

I 0 .1  
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Fig. 4 Diffraction intensity calculated by using the models in Fig. 
3(a) and (b). In both cases, N = 25 (fi = 0-02) and A = 0.05a. 
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tion pattern. However, in case of Sr2Nb20 7 the extra 
diffraction spots show an extinction in which only one 
of the two peaks near the half-integer positions 
disappears. It is found from the above argument that a 
spatially discontinuous modulation cannot explain this 
type of extinction, since it always produces a pair of 
spots at both sides of the half integer positions. 
Therefore only a spatially continuous modulation can 
be considered as a lattice modulation of Sr2Nb20 7. If 
the higher-order harmonic terms in the modulation 
wave were considerably large, they should give rise to 
higher-order satellite diffraction spots and reduce the 
extinction. These effects are not found in the diffraction 
pattern in Fig. 1. Thus the lattice modulation is 
expected to be very close to the simple sinusoidal 
modulation. 

4. High-resolution electron microscopic study of the 
incommensurate lattice modulation 

4.1. Imaging of the lattice modulation 

High-resolution electron micrographs of the crystals 
were taken in the 1010], [001l, 1011l and 12011 
orientations. For the crystals of the 10101, 1001 I, and 
[2011 orientations, weak lattice-fringe images showing 
the modulated lattices were observed at certain crystal 
thicknesses and defocuses. But the relationship between 
the fundamental lattice and the modulated lattice was 
not clearly seen in those images. On the other hand, the 
crystal in the [011] orientation gave a clear image of 
both of them as shown in Fig. 5(a), which is an electron 
micrograph taken under the diffraction condition 
shown in (b). The circle in (b) shows the size of the 
objective aperture. The thickness of the crystal 
increases from lower to upper parts of the micrograph. 
Several steps on the cleaved surface with a height of 
one slab thickness (1.3 nm) are contrasted at positions 
indicated by triangles. Broad lattice fringes indicated by 
the arrows P and Q are also seen which are produced 
by the diffraction spots near the positions ½00 and ½ i l, 
respectively, and due to the modulated lattice of the 
incommensurate structure. The reflection near the ½00 
position is a forbidden reflection, but appears in the 
diffraction pattern from this orientation due to the 
multiple-scattering effects. It is noted that the contrast 
of the modulated lattice fringes increases with crystal 
thickness and it is hardly seen in the thin regions. These 
fringes were stable during the observation and appeared 
homogeneously within the region of at least a few 
hundred nm across. 

Fig. 5(c) shows a magnified image of the region 
enclosed by the rectangle in (a). Fine black and white 
spots are seen which are produced by the fundamental 
reflections giving the image of the fundamental lattices. 
The spacing between the white spots along the a axis 

corresponds to the lattice parameter a. The upper 
vertical short lines in the middle of (c) show the 
positions of the white spots, with an interval of 2a. The 
lower vertical lines show the white positions of the 
fringes (marked P in Fig. 5a) due to the modulated 
structure. The spacing of the latter fringes is slightly 
larger than 2a, and the upper and lower vertical lines 
gradually shift with each other from left to right in the 
figure. This clearly shows the spatially continuous 
nature of the lattice modulation in the incommensurate 
phase. The relative shift of the 16th lines amounts to a, 
which corresponds to a value of 6 of 0.015. 

Figs. 6(a) to (d) show the images of a through-focus 
series taken from another region but in the same 
orientation and with nearly the same crystal thickness 
as that of Fig. 5(c). The image in (d) is very similar to 
that of Fig. 5(c). The contrast of the modulated lattice 
fringes changes with defocusing; the fringes are seen in 
(a) and (d), but not in (b) and (c). 

4.2. Image simulation 

First, for simplicity we simulate the images from the 
fundamental structure on the basis of the multislice 

( a  } ; ~..~.'~, ", , ",'. . . . . .  " • , ~ ~ ~:"  " " ~ "  "~: " $.. :2.. - " ' " 

,,/" " \  
' ' I kq  

Fig. 5. (a) High-resolution image of the crystal in the 1011] 
orientation, taken under the diffraction condition shown in (b). 
The fringes marked P and Q show the modulated lattices in the 
incommensurate phase. (c) The magnified image inside the 
rectangle in (a), clearly revealing the spatially continuous lattice 
modulation (see text). 
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method (Goodman & Moodie, 1974: Cowley, 1975), in 
order to find the crystal thickness and the value of 
defocus for the observed images. The atom coordinates 
reported by Ishizawa et al. (1975) were used as those 
of the fundamental structure. The direction of the 
incident electron beam is along the 101 I I axis, so slices 
are perpendicular to the [0111 axis with a thickness Az 
of (b 2 + c2) j/2 corresponding to one unit-cell dimension, 
i.e. Az = 2.74 nm (see Fig. 7). The projected potential 
along the [011] direction has cell dimensions, a and d0~ ~ 
in the orthogonal directions on the plane of the slice, 
where d0i 1 is the spacing of the (051) planes (0.56 nm). 
The number of beams used is 1024 (32 x 32). Fig. 
8(i)(a) shows the calculated projected potential. The 
projected cell is shown by the rectangle. The potential 
peaks concentrate on the mirror planes at the positions 
of x = 0 and x = ½, since every atom is located on the 
mirror planes (see Fig. 2). The conventional values of 
the instrumental parameters of the JEM 200CX 
electron microscope were used for the image cal- 
culation; the coefficient of spherical aberration of the 
objective lens C s = 1.4 mm, the coefficient of 
chromatic aberration of the objective lens C C = 1.4 mm 

and the instability of the high voltage and the objective 
lens current A V / V  = 2AI/I  = 2 × 10 ". The semi-angle 
of the beam divergence is 0.45 mrad corresponding to 
a condenser aperture of diameter 100 lum, and the 
objective aperture includes all reflections less than 
0.75 A ~ in reciprocal space. The effects of chromatic 
aberration and beam divergence were treated by using 
envelope functions (Fejes, 1977). Simulations were 
done for many crystal thicknesses and defocus values, 
and the simulated images were compared with observed 
images. It was found that calculated images similar to 
those observed are found for the crystal thickness of 
8Az (21.89 nm). These images for several defocus 
values are shown in Figs. 8(i)(b) to (i)(h), and the 
images of (i)(b), (i)(d), (i)(e) and ( i ) ( f )  fit well with the 
observed images in Figs. 6(a) to (d) respectively, except 
for the modulated lattice-fringe contrast. 

Next we consider the contribution to the image 
contrast from the atom displacements due to the 
modulation wave. We use the model shown in Fig. 2 
and assume, for convenience, that the modulation wave 
has a period of 2a (M = 2). At first only the 
displacements of the heavy Sr atoms either in the c 
direction or in the a direction were considered for the 
calculation. The displacement with the amplitude 
vector of 0.02e gave no appreciable change in any 
simulated images of the through-focus series, but those 
with 0.03e and 0.04e gave images similar to the 
observed ones. However, images given for the ampli- 
tude vector of 0.05e showed unacceptable contrast 
changes. The images were also calculated for the same 
conditions except that the phase of the modulation 
wave was taken as zero or n/2 instead of n/4. These 
images had stronger contrast due to the modulation 
wave than those for the phase of n/4, but in this case 
the calculated intensities of forbidden reflection such as 
the Oil  and 100 reflections became comparable with 

(a) (b) 

(c) (d) 

Fig. 6. The through-focus images from the 10111 crystal with a 
thickness nearly the same as that in Fig. 5(c). 

' l !e-  
v v i' 

[0~1 

[0111 

b 

i 

d oil 

zaz 

Fig. 7. The arrangement of the crystal and the electron beam under 
which the images in Figs. 5 and 6 were taken. Az is a slice 
thickness for the image simulation by the multi-slice method. 
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the extra reflections though they are both extremely 
small for the phase of ~t/4. Thus it is expected that the c 
component of the amplitude vector for the Sr atoms is 
in the range between 0.02e and 0.05e, i.e. 8 to 20 Pm. 
With the displacement of Sr atoms in the a direction the 
calculated images for the amplitude vector of 0.04a 
showed no contrast change, but those for the ampli- 
tude vector of 0.06a gave images different from the 
observed ones. Although the images are not sensitive 
enough to estimate the a component of the amplitude 
vector, it can be safely said that the a component is less 
than 0.04a, since even for this value the calculated 
intensity of the forbidden 100 reflection became 
comparable to those of the extra reflections. 

Figs. 8(ii)(a) to (ii)(h) show the case of good fit with 
the observed images; (a) is the projected potential, and 
figures from (b) to (h) are the images of the through- 
focus series calculated for an amplitude vector of the 
modulation wave of 0.03c for the Sr atoms, and 0.04a 
and 0.03e for the oxygen atoms. Those displacements 
of oxygen atoms (11 Pro) correspond to a rotation of 
the NbO6 octahedra by 3.3 ° around the b axis. The 
phases of the modulation wave ~Pk were taken as n/4 for 
each atom. The contribution of the displacements of the 
oxygen atoms to the images is small in comparison with 
that of the Sr atoms, but it was found that they enhance 
the contrast of the modulation fringes to some extent. 
Figs. 8(ii)(b), (d), (e), ( f )  fit well with the observed 
images of Figs. 6(a) to (d), respectively. The 
modulation of the contrast with a period of 2a appears 
in (ii)(b) and (ii)(f),  but not in (ii)(d) and (ii)(e). 
(Notice the faint image contrast among the strong 
white spots.) 

4.3. Interpretation of the images 
Figs. 9(a) and (b) show the variation of the 

intensities and phases of several reflections with crystal 

thickness (t), which are the results of the multi-slice 
calculation for the_images of Fig. 8(ii). The intensities 
of the ½00 and ½11 reflections are seen to increase 
monotonically with thickness and become strong 
enough to contribute to the image profiles at a 
thickness of 8dz. This agrees with the contrast 
variation of the modulated lattice fringes mentioned in 
Fig. 5(a). However, at a thickness of 8Az the intensities 
and phases of the fundamental reflections are different 
from those expected by the kinematical approxi- 
mation, so the image does not reproduce the structure. 

Here we consider the effect of defocusing on the 
images. The wave function of the electron at the bottom 
of the crystal is described as 

q/(r) = ~ ~h exp(2~zih, r), (11) 
h 

where 7~, is the amplitude of the h reflected beam. The 
intensity on the image plane is given as 

l(r) = i ~ TJh exp(27rih'r) explix(h)ll (12) 

where z(h) is a phase factor given in terms of the 
defocus A f,  the wavelength of the electron beam 2, and 
the spherical aberration coefficient, C s, as x(h) = 
7tAfRh z + (7t/2) C~ 2s h ~. 

Large terms coupled with the transmitted beam in 
(12) are given for axial illumination by 

/(r) = x,_ 21 t/J h ~)1 cosi2~z(h.r) + x(h) + Oh -- 00l + .... 
h 

(13) 

where Oh is the phase of 7J~. This expression indicates 
that the image is composed of many lattice fringes. The 
lattice fringes for the h reflection depend on the phase 
factor z(h) or the value of defocus, A f,  so defocusing 
causes a shift of the lattice fringes due to the change of 

r ~ .  I .  
.. ,~, ~,..~. . . , .~  .... . : . . . . . .  , . . .~ ,  ~ 

, ~ I !  ~'~,:.'i;~!:?' ~ h i ! ' ~  ~;. ~ ' i i  ............. i , . . ~ ' l ~ : ' " :  ... ilI,11~ i l l lF llHi 

• ~ ! i ,  ' w 

I I I • 

, ,  . 

( i i ) .  ! . , , 

• I . i~ 

~ . .  

(a) P . P .  

~ I ~ I  I I~  a.!,q, ~!!.I',, 

(h) .!/" 0 nm (c) 20 nm 

• 

(d }  40  hi l l  (C) riO ] lm ( . / ' )  80 nm (A') I 0 0  nrn (h)  120 nm 

Fig. 8. Simulated images (i) for the normal structure and (ii) for the modulated structure (M 2). The crystal thickness is 8dz. The images 
in column (a) show projected potentials (P.P.) along the [01 I I axis and those in columns (h) to (hi are images o f the  through-focus series. 
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this phase factor. If the change of z(h) by defocusing 
amounts to 2re, the lattice fringes shift to the same 
position as before. This arises with the defocus period 
of Afl = 2/21hl 2 for the h reflection (Fourier images; 
Cowley, 1975). In the case of centrosymmetric 
crystals, ~h ---- W h, SO the lattice fringes produced by 
the h and --h reflections do not move but change their 
contrast as the defocus varies. However, if Wh :::/ ~/' h, 

1 
~o- ~ T  

lo ........ / . . . . . . . . . . . . .  2~ 

400 

1o 

10 ~l 1 
10 

0 5 t/Az 
(a) 

7"( ............................................................................... 

o2~ 

000 

0 ............................................................... 

1 

\ ~ 2 0 0  
-Jr ~ \ . . . .  _~0~2  

0 5 tlAz 

(b) 

Fig. 9. Variation of (a) intensities and (b) phases of several 
reflections with crystal thickness calculated by the multislice 
method. 

the dominant lattice fringes will be seen to move by 
defocusing. 

In our case the images are_ mainly produced by the 
lattice fringes of the (022), (111) and (200) planes. The 
crystal is noncentrosy_mmetric and it was found in the 
calculation that I tP'(022)l is larger than I tp'(022_)l by a 
factor of 2.4 at the crystal thickness of 83z, and 
I ~ ( l i l ) l  > I ~ ( l l i ) l ,  W(200) _~ W(}O0). The value of 
Afl is equal to 61-6 nm for the 0 i 2  reflection and 
82.2 nm for the l i l  reflection. It is seen in Fig. 8(ii) 
that the lattice fringes of the 0}2 reflection, which 
consists of arrays of the strong white spots aligned 
parallel to the horizontal line shift from (b) to (c) and 
(d), in both (e) and (h) locate at nearly the same 
position as in (b). In the same way the lattice fringes of 
the 111 reflection which are oblique lines shift from (b) 
to (d) by half of the fringe spacing and come back to 
the initial position in ( f ) .  The weak modulated lattice 
fringes are invisible when these strong fringes enhance 
each other to produce a strong contrast as seen in (d), 
(e), and (h). On the other hand, they can be seen as in 
(b), (e), ( f ) ,  and (g). 

For the modulated lattice fringes due to the extra 
reflection near the ½00 position, the value of A f  z is large 
(493.6 nm), because of the low-order reflection. So the 
modulated lattice fringes shift very little by the defocus 
change compared with the lattice fringes of the 
fundamental reflections. It is noticeable that the strong 
white spots produced by the fundamental reflections 
always appear nearly on the mirror planes of the 
fundamental lattice in the images of the through-focus 
series in Fig. 8(ii). These facts give the possibility of 
determining precisely the phase of the modulation wave 
at each atom position or the spatial distribution of the 
atom displacements in the crystal. 

Fig. 10 schematically depicts the atom displace- 
ments in the successive perovskite-type slabs due to the 
modulation wave, in accordance with the model 
mentioned in § 3.2. The figure shows a cross section of 
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~ . . . .  __ . . . .  Ha-- 

i 

• ..,, ,I I  TITIIITI . -  ,[.-]J-I 
T 1 T , , , ,  : [TT]  . . . .  l i l t  l[r 

. . . .  l , l . l - I - l - I  

. . . . . .  T£T][IT 

, 6  , , , ; , , 

Fig. 10. Schematic representauon of atom displacements in the 
successive perovskite slabs due to the incommensurate lattice 
modulation. This is a projection along the c axis, corresponding 
to Fig. 2(c). The modulation wave is depicted at the upper part of 
the figure. 
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the structure perpendicular to the c axis, corre- 
sponding to Fig. 2(c). The arrows indicate magnitudes 
of the atom displacements such as the rotation of the 
NbO~ octahedra. The phase, tp. of the modulation wave 
at the origin of each unit cell is indicated in the lower 
part of the figure. 

The regions with phases tp and tp + rr will show the 
same images except that they shift from each other by 
the lattice parameter a. We simulated the observed 
images shown in Fig. 5(c) by using the same param- 
eters as those used to calculate the image of Fig. 
8(ii)(f).  for the different phases of ¢ = O, n/4 and rt/2. 
Fig. 1 l(a) is a magnified image of Fig. 5(c), and Fig. 
11 (b) shows the calculated images. When we notice the 
contrasts of the white spots aligned in the horizontal 
line at the level indicated by arrows 1 and 2 in Fig. 
1 l(a). we find that along the line 1 the white spots 
change their contrasts alternately in the left of the 
micrograph but not in the right, while along the line 2 
the contrast change arises in the right but not in the left. 
In the middle region of the micrograph the contrast of 
the white spots changes alternately along both of the 
lines. This feature repeats in the upper and lower 
successive lines. The calculated images for the phases 
of 0. zr/4, and n/2 fit with the observed ones if arranged 
as shown in Fig. 11. Therefore, we can find the phase of 
the modulation wave at any position from the 
micrograph. 

The above mentioned contrast is interpreted as the 
modulated lattice fringes, i.e. the vertical fringes P in 
Fig. 5. As indicated by marks B (bright) and D (dark) 
in Fig. 1 l(b), the bright fringes which locate at the 
positions of the white spots on the line 1 in the region of 

= 0 shift gradually with an increase of the phase. 
They shift by a/2  into the positions of the neigh- 

bouring white spots on line 2 in the region of tp = ~t/2. 
These features are just those described for the image of 
Fig. 5(c). 

5. S u m m a r y  and  d i scuss ion  

High-resolution electron microscopy is a useful method 
for analysing incommensurate lattice modulations of 
the displacive type. The intensities of the extra 
reflections are too weak in the thin region of the crystal 
to contribute to the image profile. It is necessary to 
treat the images in the thicker region in order to obtain 
information on the lattice modulation, although such 
images do not reveal the crystal structure even under 
the optimum defocus condition. From the precise 
comparison of the observed through-focus images with 
the simulated images it is found that a model of the 
atom displacements proposed on the basis of the 
analysis of the systematic extinctions of the extra 
reflections explains well the observed images. How- 
ever, the images are not very sensitive to the atom 
displacements, especially for those of the oxygen 
atoms. The image simulation also enables us to 
determine the phase of the modulation wave at a 
particular position in the crystal.. 

In the calculation by the multi-slice method the slice 
thickness taken here seems to be too large, since the 
electron wave laterally spreads out by about 0.08 nm 
due to Fresnel diffraction when it propagates through 
one slice. But if we choose a thinner slice to divide the 
unit cell in the usual way, this makes the multislice 
calculation more difficult, because the lateral period of 
the projected potential for each slice becomes too large. 
In order to avoid this difficulty, the crystal was cut into 

(a) 

2 ~ 

. . . . . . . . . . . . . .  ; !  , ¢ . . . . . . . . . . . .  

I 
D B D D D B B  D B D 

tp=0 tp=- ~0=-  
4 2 

Fig. 11. (a) The magnified image of Fig. 5(c), and (b) simulated images under the same condition as that in Fig. 8(ii)(f), but for different 
phases. Notice the contrasts of the white spots along the lines l and 2. 
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thin slices parallel to the (010) plane to conserve the 
periodicity of the unit cell, and the images were 
calculated by the usual multislice method, using the 
algorithm recently proposed by Ishizuka (1982). The 
results of such a calculation in which the unit cell was 
cut into four pieces showed that the variation of the 
amplitudes ~h of the low-order reflections with the 
crystal thickness is almost the same as that in Fig. 9. So 
we can safely say that the value of Az used here is not 
large enough to affect the image calculation seriously. 
This is because the main profiles of the images are 
produced by a few of the low-order reflections. 

The physical origin of the appearance of the 
incommensurate phase in Sr2Nb207 has not yet been 
explained. BaMnF 4 also has an incommensurate phase 
below 247 K (Cox, Shapiro & Cowley, 1979), the 
structure of which is similar to Sr2Nb20 7 except that 
the thickness of the perovskite-type slab is half of that 
in Sr2Nb20 7. However, the lattice modulation and its 
properties are different from those in Sr2Nb20 7. Recent 
study of the solid solutions SrE(Tal_xNbx)207 
(Yamamoto, Nakamura, Yagi & Ohi, 1980) showed a 
close correlation between the incommensurate struc- 
ture of SrENb20 7 and the superlattice structure of 
Sr2Ta20 7. This point must be taken into account when 
we consider the origin of the incommensurate phase. 

The author is indebted to Professors G. Honjo, and 
K. Yagi for their useful discussions and continuous 
encouragement. Thanks are also due to Dr K. Ishizuka 
for the fruitful discussion on the image simulation. This 
work was partly supported by ARO grant number 
DAAG-29-80-C-0080 and the NSF HREM facility at 
ASU. 
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